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Abstract—Counting and identifying neighboring active nodes
are two fundamental operations in wireless sensor networks
(WSNs). In this paper, we propose two mechanisms, Power based
Counting (Poc) and Power based Identification (Poid), which
achieve fast and accurate counting and identification by allowing
neighbors to respond simultaneously to a poller. A key observa-
tion that motivates our design is that the power of a superposed
signal increases with the number of component signals under
the condition of constructive interference (CI). However, due to
the phase offsets and various hardware limitations (e.g., ADC
saturation), the increased superposed power exhibits dynamic
and diminishing returns as the number of component signals
increases. This uncertainty of phase offsets and diminishing
returns property of the superposed power pose serious challenges
to the design of both Poc and Poid. To overcome these challenges,
we design delay compensation methods to reduce the phase offset
of each component signal, and propose a novel probabilistic
estimation technique in cooperation with CI. We implement Poc
and Poid on a testbed of 1 USRP and 50 TelosB nodes, the
experimental results show that the accuracy of Poc is above
97.9%, and the accuracy of Poid is above 96.5% for most cases.
In addition to their high accuracy, our methods demonstrate
significant advantages over the state-of-the-art solutions in terms
of substantially lower energy consumption and estimation delay.

I. INTRODUCTION

Numerous applications in WSNs require the sensor nodes
to be aware of their neighbors’ up-to-date states to perform
decision making. For example, nodes are usually interested
in (1) the number of their neighbors in a particular state, e.g.,
how many of my neighbors have a battery level above a certain
threshold [4], or even (2) the identities of their neighbors in
a particular state, e.g., which nodes who have witnessed a
common event [25]. In this sense, counting and identification
are two fundamental operations in WSNs. Unfortunately, cur-
rent WSN systems and protocols are not tailored to address
the challenges of achieving fast and fine-grained counting and
identification. Traditional counting and identification methods
typically adopt a TDMA-based scheme. This shceme requires
a poller to contact neighbors sequentially or reserve a unique
time slot for each neighbor to respond [3]. This approach is
inefficient since the poller’s communication delay and energy
consumption increase linearly with the network size. Recently,
Zeng et al. [26] proposed two RSSI-based counting schemes,
LinearPoll and LogPoll, which allow neighbors to respond

simultaneously. However, LinearPoll has just constant energy
consumption improvement over the TDMA-based scheme and
LogPoll can only count nodes on a logarithmic scale.

Different from the existing works, we propose to utilize
constructive interference (CI) to tackle the counting and identi-
fication problem. CI is a new trend in wireless communications
and has been leveraged to achieve fast network flooding and
time synchronization [11] or fast data dissemination [7]. In
this work, we take advantage of some nice properties of
the received power of superposed signals under CI. A key
insight behind our design is that the received power of a
superposed signal is predictable with bounded error if the
received power of each component signal can be accurately
predicted, and the phase offset (PO) of each component signal
has bounded variability. We construct a power prediction
model by following this insight. Next, based on the power
prediction model, we propose two novel mechanisms, Power
based Counting (Poc) and Power based Identification (Poid),
which realize fast and fine-grained counting and identification
in static networks. Both of these two mechanisms assign
each neighbor a responding power in an offline manner.
Nevertheless, Poc and Poid adopt different power assignment
schemes. In particular, Poid, works in sparse networks, assigns
diverse responding power for each neighbor and ensures that
the received power from any two neighbors or any two
combinations of neighbors are sufficiently different. Thus Poid
can estimate the set of responders efficiently by identifying
the unique received power. Conversely, Poc ensures that the
received power from each neighbor is nearly the same, then it
counts the nodes by identifying the power gain of a superposed
signal relative to a single signal. Poc adopts a novel proba-
bilistic estimation technique and is thus resilient to network
density. Since the received power is processed locally, both
these two mechanisms have constant communication delay,
thus achieving fast counting and identification with constant
energy cost.

In this paper, we first identify two grand challenges faced
in our design. First, while the received power from individual
neighbors can be accurately predicted in static networks [26],
power superposition from multiple neighbors is rather difficult
to predict since the POs across different transmissions are
quite random. This uncertainty poses a serious challenge to the



design of both Poc and Poid. To handle this challenge, we take
a close look at different types of delays in the processing of
the neighbors’ radios. We show that by compensating software
delay, hardware delay and signal propagation delay across
different nodes in an offline manner, PO can be reduced to
a level of 0.25us with very small variability. The second
challenge is that there exists an upper bound on the observed
received power due to various hardware limitations, e.g., the
poller’s analog-to-digital converter (ADC) saturation. As a
result, the observed received power of a superposed signal
cannot truly reflect the real power if the real power exceeds
a threshold. To address this challenge, we assign a response
probability p to each node, then nodes will respond to the
poller with probability p such that the received power is strictly
below the upper bound with high probability. We present
methods to find the optimal p and develop a novel two-phase
estimation to reduce the estimation delay and improve the
estimation accuracy.

The major contributions of this paper can be summarized as
follows. (1) We investigate the model of predicting power of
individual signals and superposed signals. Experimental results
show that our model is reliable when the received power is
upper bounded by a certain value. (2) Based on this model,
we propose Poc, a fast and fine-grained counting scheme
that is resilient to network topology and size. Poc improves
the counting accuracy from logarithmic scale of LogPoll to
linear scale. (3) We further propose an efficient identification
scheme, called Poid, based on this model. Poid achieves
accurate identification with constant delay and reduces the
energy consumption of LinearPoll from O(n) to O(1) in
sparse networks. (4) We implement these two schemes on a
testbed of 1 Gnuradio/lUSRP1 [9] and 50 TelosB [18] nodes.
Experimental results show that the accuracy of Poc is above
97.9%, and the accuracy of Poid exceeds 96.5% for most
cases. In addition, our methods achieve substantially lower
energy consumption and estimation delay compared with the
state-of-the-art solutions.

II. SUPERPOSED SIGNAL WITH CI

A key insight behind our design is that the received power
of a superposed signal increases with the number of responders
given that the component signals are added to each other
constructively. To better understand such relationship, we
provide theoretical amplitude analysis and conduct prelimi-
nary experiments. Experimental results reveal the limitations
of power superposition under CI, which trigger our further
consideration on the design of Poc and Poid.

A. Signal Power under CI

The IEEE802.15.4 standard [15] compatible radios e-
quipped in sensor nodes adopt an offset quadrature phase-shift
keying (O-QPSK) modulation scheme. With half-sine pulse
shaping, this scheme is equivalent to minimum-shift keying
(MSK) [22]. By O-QPSK modulation, the quadrature phase
signal is delayed by T, = 0.5 us with respect to the in-phase
signal. To achieve CI in sensor networks, the maximum phase
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Fig. 1: Waveform of a superposed signal and four component signals.

offset (MPO) across different transmissions must be no larger
than 0.5 us [11].

Consider multiple signals superpose at the poller and each
with noise N;(t). Let s,(t) denote the received superposed
signal from n responders, A; and 7; are the amplitude and
phase offset of the ' signal. Then s,.(¢) can be calculated as
sp(t) = Yor [Ais(t — 73) + ni(t)]. After performing coher-
ent demodulation on s, (t), the poller will sample the baseband
signals with period 27,. According to [23], we get the peak
amplitude A, of the received signal (i.e., sample values of
positive chips) as A, = Z?:l fAi cos(QLTCTT;) —|—ni], where
n,; represent the noise in the ‘" signal after demodulation.
Since signal power is proportional to the square of amplitude,
by assuming that the proportionality constant is 1, we can get
the received power P, as

Z(Ai cos(ln) +n;)

P, =A% =
' i=1 2T

)

In Fig. 1, a 4-chips ([1 0 O 1]) MSK signal and three
replicas with phase offsets [0.25 0.5 0.75]7, are plotted, all
have the same unit amplitude (4; = 1) and white Gaussian
noise with power level being 0.01. The superposed signal
is demonstrated with marks on the sampling points where
t = kT, (k = 1,3,5...). As is shown in Fig. 1, the
amflitude of the superposed signal after sampling is about
> iz ¢os(gr - 1) = 3.01, which is much larger than the
original signal.

B. Beyond CI

CI requires that the MPO does not exceed 0.5 us [11].
However, such precise synchronization may not be achieved by
a simple common trigger. In [11], Ferrari et al. showed that
by compensating software processing delays and mitigating
hardware delays across different neighbors, CI can be achieved
in commodity sensor platforms equipped with CC2420 radios.
Nevertheless, this method alone can not ensure sufficient
power gain of the superposed signals. Consider an extreme
case where all delayed signals have phase offsets of 0.5 us,
P, is equal to the power of a single signal.
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Fig. 2: Execution timeline of a initiator and two receivers with respect
to the transitions of SFD pins.

1) Compensating Signal Propagation delay : We first take
a closer look at the delays of different nodes that lead to the
phase offsets among different transmissions.

Signal propagation delay ?,, is the duration of signal’s two-
way around flight time between an initiator and a receiver.
Strictly speaking, there also exists delay in the radio’s sensing
an arriving transmission (i.e., the time required by radio to
successfully decode the first symbol). However, this delay is
hard to evaluate. Here, we just consider the sum of propagation
delay and radio’s sensing delay as the signal propagation delay.

Software delay ¢, is the sum of (1) the delay that mi-
crocontroller unit (MCU) detects the transition of radios’s
SFD pin after the radio signaling its completion of a packet
reception, (2) the number of MCU clocks before it issues
a transmission request to the radio, (3) the delay that radio
detects the transmission request from the MCU.

Hardware delay ¢;, describes the time required by radios
to calibrate it’s internal voltage controlled oscillator (VCO) to
switch from packet reception state to transmission state.

In Fig. 2, we plot the SFD activities of 1 initiator and
2 receivers and specify these three delays using the tran-
sitions of SFD pin as common references. Here, t,. and
ty denote the time duration required by radios to transmit
the preamble and the start of frame delimiter of a packet.
These two delays only depend on the standard. In [11],
Ferrari et al. showed that software delay ¢; can be accurately
evaluated and compensated and hardware delay ¢, can be
mitigated by issuing a transmission request before reading the
whole packet out from the Rz buffer. Hereafter, we assume
ts + ty + tpr 4+ ty is fixed for all nodes. Hence the signal
propagation delay of receiver 1 and 2 can be expressed as
tp = (to —t1) — (t7 — t2),tp2 = (to — 1) — (ts — t3),
where t9 — t; is the duration between two rising edges of
the SFD pin on the poller and so on to the receivers. We
denote this duration of the initiator and receiver i as ¢ and
ti respectively. Thus the signal propagation delay of receiver
i can further be expressed as t,; = t0 — t¢. According to the
experimental results, ¢,,; differs from ¢, significantly, even if
the two receivers share a similar distance to the initiator. This
is due to the clock frequency drifts among different nodes [23].

Based on the fact that all nodes have the same data trans-

mission delay (denoted as ¢4, in Fig. 2), we can estimate the
clock drift coefficient of each node relative to the initiator.
This fact is also used in [23]. Define by A; the clock drift
coefficient of node ¢ relative to the initiator. Then in Fig. 2 we
have \; = i‘;:;, = % To estimate \;, the initiator
sends a packet to node ¢ and records the instants of transitions
of its SFD pin. On receiving the packet, node ¢ also records
the instants of transitions of its SFD pin and piggybacks these
instants to the initiator. The initiator thereby computes \;
as in the previous equations. After obtaining the clock drift
coefficient of each node, the initiator calibrates its estimation
of signal propagation delay for each node: t),; = 0 — i)
This process can be repeated for multiple rounds to get the
average t;i to reduce variance. In real applications, the clock
drift coefficients need to be updated periodically since the rate
of clock drifts may vary with time.

Thereafter, the initiator would compensate each node a
certain number of no operations (NOPs) in the processing
of their MCUs. Typically, a NOP operation consumes one
clock cycle without performing any operation [6]. In our
implementation, the MCU runs at a frequency of 4,194,304 Hz.
Thus, the granularity of NOPs is about 0.23 s, indicating that
the theoretical MPO would be no larger than 0.23 us after
phase offset compensation. Finally, the number of NOPs is
embedded in a dedicated packet sending to each node.

2) Experiments on Synchronization: We randomly selected
31 TelosB nodes in our testbed shown in §. VII. One of them
acts as the initiator and the remainder are responders. The
initiator’s SFD pin is connected to a logic analyzer with a
granularity of 2ns. In the initial stage, we let the initiator
perform 30 packet exchanges with each neighbor to compen-
sate their respective propagation delays. Then the experiment
proceeds in rounds. In each round, the initiator randomly
chooses k neighbors and records its t2 every time after a packet
exchange with each neighbor. We know that if neighbors are
perfectly synchronized, tY will always be the same. Therefore,
by computing the maximum difference among different ¢0’s,
we can measure the MPO among % neighbors’ transmissions.
We initialize k& with 2 and sequentially increase it by 2 until
k = 30. In each round, we repeat the experiment 200 times.

Fig. 3 compares the synchronization accuracy of Glossy
in [11] and the one after adding the propagation delay
compensation (PDC). Dots on the lines shows the average
phase offsets; error bars indicate the standard deviation. The
results of Glossy are obtained by applying its synchronization
methods (i.e. methods of software delay compensation and
hardware delay compensation) to our testbed. We observe that
as the number of nodes increases, the synchronization accuracy
of Glossy degrades much faster than PDC and even exceeds
0.5 pus with more than 28 nodes. Although the MPO of PDC
increases notably with the increasing number of nodes, its
maximum values are always less than 0.4 us.

Fig. 4 further gives the degree of synchronization precision
we are able to achieve when the responder size is 30. The
results are obtained through 20 rounds’ experiments. In each
round, we change the topology of the 30 responding nodes
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Fig. 3: Synchronization error against different number of simultane-
ous transmissions.

(as re-selecting the 30 responders in the testbed shown in
§ VII). We compute the difference of each t relative to the
smallest one so as to record the synchronization error of 30
responders. The 90" percentile of the phase offsets is 0.4 js
and the mean offset is 0.268 s, somewhat worse than the
0.23 us of theoretical minimum phase offset. However, this
level of precision is adequate to support power based counting
and identification, which we will demonstrate in the following.

C. Limitations on Power Superposition

From the experiment results in § II-B2, it is possible to
conclude that if we add a transmission with unit amplitude,
the amplitude gain of the superposed signal would be cos(F -
%) = 0.31 with high probability because the extreme phase
offsets (either too large or too small) are rare. Hence counting
the number of transmissions can be easily done by identifying
the power gain of the superposed signal relative to a single
signal. Unfortunately, this conclusion is not always true for
the following two reasons:

(1) As shown in Fig. 3, MPO across different transmissions
increases with the number of concurrent transmitters'. We
cannot ensure that MPO is always below a certain value with
more responders. (2) Constrained by the saturation rate of
ADC built in the initiator, sample values exceeding a threshold
will be truncated [10], which indicates that there exists an
upper bound on the observed received power of a superposed
signal.

We conduct an experiment to evaluate the observed received
power of superposed signals under the same setting as in
§ II-B2. The difference is that in each round, the initiator will
trigger all the selected neighbors to perform a transmission
simultaneously at the maximum power level. The initiator
records the received power in each round. As shown in Fig. 5,
the increasing tendency of received power starts to slow down
when more than 24 responders respond. Therefore, the power
gain assumption is effective only when the received power is
less than a threshold F. Clearly, Py depends on the saturation
value of the initiator’s ADC. This threshold is usually lower
than the initiator’s nominal saturation value due to the non-
linearity effect of ADCs [10]. Based on the results in Fig. 5,
in our following experiments, we set Py = 1.2 mW.

IThis problem is also validated in [7].
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III. SYSTEM MODEL

A. Single Signal Power Prediction

We consider a static network composed of a poller s and a
neighbor set N. Denote by L(s, ¢) the path loss from neighbor
i (i € N) to the poller s. In this paper, L(s,1) is the effective
path loss from ¢ to s that accounts for not only the free space
attenuation but also shadowing and multipath effects. Since we
target static networks, we suppose path losses change slowly
and L(s,1) is relatively constant unless external interference
occurs. Let P(i, h;) be the received power obtained by s when
a single neighbor i responds at power h;. We have P(i, h;) =
a;h; + b;, where a; and b; are coefficients that we should
estimate, b; depends on both the additive background noise
N and the path loss L(s, i) [26]: b; = N — L(s,1).

To predict P(i, h;) under a given h;, poller s first estimates
a; and b; on link (4, s). This requires at least two samples of
tuple (P(i, h;), h;) which can be obtained by either overhear-
ing or directly receiving packets from i. In reality, we use more
than 2 of these tuples and estimate a; and b; by least-square
approximation. After getting the estimation of b;, denoted as
b;, we compute the estimation of path loss as L(s,7) = N —b;.
In the context of this paper, the unit of power is milliwatt
while commodity sensor nodes usually provide power with the
granularity of 1 dBm. Hence, the poller should first perform
a conversion on these two units before the estimation.

Note that we need only to perform the above power predic-
tion once, and this can be done during the node synchroniza-
tion phase (see § II-B) at no additional cost.



B. Power Superposition Model

Here we introduce the prediction on the received power of
superposed signals. Let I be a non-empty subset of N, P(I)
be the received power of the superposed signal from nodes in

~

1. By substituting the amplitude A; in Eq. 1 with 1/ P(i, h;),

we obtain the estimation of P(I) as

2

P(1) = |\/Pk,he) + > /P, hi cos(2iTcn) )

iel\k

where signal k is the earliest signal reaching s and has zero
phase offset. In the implementation, we assume that signal
k is from the node who has the least total delay in I after
propagation delay compensation. Note that we ignore the noise
in signals. However, the background noise N is not negligible
and it is accounted for in P(i, h;).

Now, phase offset 7; is the only unknown parameter. Nev-
ertheless, it appears rather difficult to estimate such a random
parameter. By compensating propagation delay for each node
in § II-B1, we show that 7; can be confined to a smaller range
from 0.1 us to 0.4 us with high probability. For simplicity, we
use the average case of 0.25 us to all delayed signals. Thus,
we can rewrite Eq. 2 as

2
\/ﬁ(k,hk)—i—cos% ST VPG| 3)

iel\k

We have the following requirement for bounded prediction
error by using the above estimation: There exists some 9, for
any non-empty set I C N: P(I) —6 < P(I) < P(I) 4.
Based on our experiments with CC2420 radios, we observe
that the 99" percentile of § is at most 0.03 mW. Therefore, this
requirement is satisfied in a static network if no interference
occurs.

IV. POC DESIGN

Poc allows a poller to estimate the number of neighbors
where a predicate holds by letting the neighbors respond
simultaneously. Constrained by hardware limitations, the re-
ceived power of superposed signals, however, cannot exceed
a threshold Fy. To count the number of responders in dense
networks, Poc adopts a probabilistic estimation method which
will be detailed in this section.

A. Overview

Based on the power threshold Py, we immediately obtain a
threshold on the number of simultaneous responders, which is
denoted as ng. In the design of Poc, poller s first broadcasts
a response probability p and a predicate @) to all neighbors,
each neighbor where () holds will respond independently with
probability p. Thereafter, based on the received power, s can
estimate the number of responders. If more than ny nodes
respond, s may simply discard the result and launch another
round of estimation. We may repeat this process for multiple

rounds until achieving a satisfactory accuracy. Notice that p
is a variable in Poc which will be optimized as the estimation
process proceeds.

In the rest of this paper, we call the counting result in each
round a sample. Then the counting problem can be formulated
as a parameter estimation problem with constrained samples.
Let z; (¢ = 1,...m) be independent binomial random samples
(B(n,p)), each with the same number of n of trials and the
same probability p of a success on a single trial. If z; < ng
we call it an effective sample, otherwise an ineffective sample.
By effective sample, we mean that its value conveys quantity
information, in contrast, ineffective samples only convey a
binary state, i.e., whether it is larger than ng or not. Our goal
is to estimate n with known p based on all samples collected.
Note that if n < ng, by letting p = 1, the poller can directly
get n without additional operations. Avoiding trivial cases, we
only consider the case where n € (ng, |N|] in the following.

B. Response Power Assignment

Prior to entering the counting process, poller s first assigns
each node a transmitting power such that the received power
of each responder is similar at the poller. We assume that
the neighbors are labeled in the order of increasing path loss.
Let o be the received power of the first neighbor transmitting
with the minimum power level, 3 be the received power of
the last neighbor transmitting with the maximum power level.
Denote the common received power as &, clearly, if o > [,
no such ¢ exists. If @ < (3, we compute & by minimiz-
ing the sum of power adjustment gap over all neighbors:
§ = argmin;(, g (Yien |P(iy hy) —t]). This is similar to
the methods used in [26].

To ensure that different number of responders generate
distinguishable received power at the poller, it requires that
& > 24. This requirement holds trivially because J is usually
much less than 5. By applying £ into Eq. 3, we construct the
relation between P(I) and the cardinality of I:

P = (VE+ L1 -1VE) . @

Since the function of the righthand side of Eq. 4 is
monotonous, it has unique inverse, denoted by g(-). Then we
can get the cardinality of I by g(P(I)). Apparently, ny can
be computed as g(Fp).

C. Estimation Methodology

1) Estimator: Compared with traditional independent bi-
nomial random samples (B(n, p)), the probability of getting a
sample whose value is no larger than ng (i.e. 0,1,2,--- ,ng)
remains the same, but the probability of obtaining a sample
greater than ng is 0 due to the upper bound on the received
power. Therefore, the probability mass function needs to be
normalized to reflect a smaller universe. In other words:

(2)p* (1= e
pk:{pc 0<k<mo )

0 otherwise
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where py, is the probability that x; = k, p. is the probability
that z; < ng. Clearly, p. = > 12, (")pi(l p)" . We now
compute the expected value and variance of sample X as:
B(X) = ZWMWM):EM% B(X)? zwm—

(Z kpr) 2. In Fig. 6, we plot the expected value and variance

okf_gf with respect to different n with p = 0.15, ng = 20.
As is shown in Fig. 6, Var(X) is not a monotonous function.
Hence, it can not be used as the estimator. On the other hand,
we see E(X) is a monotonous increasing function of n. This
is intuitive since under given p, E(X) — ng as n increases.
Thus, given a observed value of X, using the inverse function
of E(X), we can get the estimation value 7.

To reduce the variance, we conduct multiple rounds of
estimation, and use the sample mean X = L 3™ z; as our
estimator. Here, m is the number of effective samples. Since
X is averaged over m independent measurements, its variance
becomes Var(X)/m.

2) Optimize Response Probability p: Consider a require-
ment that the relative error “=" of our estimator is below
a threshold # with confidence 7. In mathematical terms, we
request that P{|7 — n| < On} > n. Let u(n) and o(n) be
the expected value and variance of X under given p and ng
respectively, 11~ 1() is the inverse of u(n). By substituting 7
with g~ 1(X), we get

P{1-0n<p H(X) < (1+0)n} ©
= P{u((1 — 0)n) < X < u((1+0)n)} > 7
Lety = X :((T;) then (6) can be rewritten as
P mu—mm—mm<y<um+mm—mm}>_
{ o o) ‘ﬂn

We know that Y approximates a standard normal random
variable based on the central limit theorem. Denote the lower
bound and ug)per bound of Y by y; and vy, respectively, i.e.,

y = wd=0n—p@) - w(+0)n)—u@) numerlcally

Vo (n) \/o(n)
found that y; =~ —y,, always holds for § < 0.1, n < 200. Thus,
it is safe to assume that y; = —y,, thereafter, indicating that

the confidence interval requirement is symmetric on both the
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Fig. 7: Convexity of M,; with respect to p and the corresponding
Dop for different number of n. Results are obtained under 6 = 0.05,
n = 0.95.

upper and lower sides of n. Applying this symmetry property
and o(n) = Var(X)/m into (7) and rearranging for m yields

Var(X)[@ " ()]
~ (u((1 +0)n) — p(n))?

where ®(-) is the cumulative distribution function of the
standard normal distribution. Inequality 8 gives a lower bound
on the number of effective samples that is required to satisfy
a desired relative error 6 with confidence 1. Since m follows
binomial distribution B(M,p.) where M denotes the total
number of samples. Let m,,;, denote the right hand side of
Inequality 8, then we compute the lower bound of the expected
value of M as

®)

Mmin Var(X)[®~ (%)

_ 2
M= = G+ 0)n) — ()P

(C)]

Note that M; is the estimation delay, our goal is to find an
optimal response probability p,, in order to minimize M;. In
Fig. 7(a), we show that M; is a convex function with respect
to p under different values of n, thus such an optimal value
Dop always exists. In Fig. 7(b), we compute p,, numerically
with respect to different n under 6 = 0.05, n = 0.95. The
results demonstrate that p,, decreases monotonically with an
increasing n. Using the Matlab curve fitting tool, we obtain
the relation between p,, and n as py,(n) = 11.35/(n — 7).

3) Two-phase Estimation: As shown in Fig. 7(b), in order
to find p,p, we must know n in advance. However, n is the
number we aim to estimate, which is unknown at the initial
stage. In this section, we propose a two-phase estimation
method to adaptively estimate n: the poller first performs a
coarse estimation n using a randomly selected p over range
(ng, |IV|]; in the second phase, 7 will be used as feedback to
adjust the response probability adopted in the previous phase.
By following this strategy, we can find p,, eventually.

Phase one. Our former analysis only considers effective
samples. An ineffective sample, however, also contains useful
information about the parameter n. In this phase, we take both
the effective and ineffective samples into consideration and use
the maximum likelihood estimation (MLE) to give a relatively
“accurate” coarse estimation of n.




Assume that we obtain M samples among which a samples
are ineffective and b samples are effective. Effective samples
are denoted as x1, x2, ...x,. We know that the probability of an
ineffective sample being observed is 1 — P{0 < X < ng} =
1 — pc. Thus, the likelihood function L(n) is expressed as

K;)pm(l N p)n_mq] .

Estimation 7 is returned as the argument over (ng,|N|] that
maximize L(n).

Phase two. Poller s then uses p,,(72) to perform an accurate
estimation. s will first compute the number of effective sam-
ples required to satisfy a desired accuracy 1—6 with confidence
n (see Eq. 8). Then s will launch the measurements to get
mmqn effective samples. At last, s estimates n based on the
sample mean X.

Algorithm 1 summarizes the whole estimation procedure.

b

L(n)=(1-p)*- 1]

i=1

(10)

Algorithm 1: Two-phase Estimation
Input: ng, N, 0,7, M,
Output: 7
1 Get received power P, using p =1
2 if P. < P, then
| return g(P,)

else
n < CoarseEstimate(ng, N, M)
7 +— accurate estimation with p = p,p (1)
return n

CoarseEstimate(ng, N, M)

9 n' < rand(ng, N)

10 Get M7 samples using p,,(n’), stored in S
1 A MLE(ng, N,py(n'),S)

12 return 7

N S B w

=)

D. Estimation Delay Evaluation

We evaluate the estimation delay of two-phase estimation
scheme (TES) in Matlab. For ease of comparison, we also
propose a baseline in which the poller s uses p = po,(|N])
for estimation and keeps p unchanged in all measurements. In
the evaluation, we set ng = 20, |[N| = 100, and a varying M,
to evaluate the impact of coarse estimation.

Note that the expected number of measurements of TES
contains two parts, caused by two phases respectively. In the
first phase, the number of measurements is fixed as M. In the
second phase, the expected number of measurements of TES
is computed in the same way of the baseline: both obtained
by plugging their respective p,, into Eq. 9.

We plot the results in Fig. 8, each result of TES is averaged
over 2000 rounds. It is observed that TES’s delay increases
with M, indicating that the coarse estimation based on one
single sample is sufficient to find an optimal p. Therefore, we
use M; =1 in our following experiments. For § = 0.1, n =
0.9, we observe that TES is on average 1.5 times faster than

the baseline. For § = 0.05, n = 0.95 and 6§ = 0.01, n = 0.95,
TES is 2 times faster and 8 times faster than the baseline
respectively.

V. POID DESIGN

Beyond fast and fine-grained counting, we show in this
section that the power superposition model can also be used
to achieve accurate identification with constant delay.

A. Overview

The identification problem can be formulated as follows:

A poller s broadcasts a predicate Q). Let Q) be the set of
neighbors where @ holds (2 C N). Neighbors in () that have
received the predicate transmit an identical ACK simultane-
ously. The poller overhears the concurrent transmissions and
checks the identities of all the nodes in ) based on the received
power.

The workflow of Poid contains three steps: (1) Assign
response power; (2) Broadcast () and measure the received
power; (3) Identify the nodes that have responded. Notice that
the first step is done offline for one-time only while the second
and the third steps are two routines that can be finished with
constant delay.

B. Response Power Assignment

Unlike in Poc, in Poid, nodes are assigned diverse power
levels such that any individual or combination of responders
will generate unique received power at the poller. We propose
a simple yet efficient algorithm in Alg. 2 to achieve this goal.

Algorithm 2: Response Power Assignment

Input: Path loss of each neighbor L(s, ) Available
power level set I
Output: Transmitting power h; for each node ¢
1 Label the neighbors according to their path losses such

that L(s,i) > L(s,i+ 1)

2 Label the elements in H such that Hy, < Hy4
310

4 hy + argmingep (P(1,h) — P, > 6)

5 I < I node 1

6 for i < 2 to |[N| do

7 for k < 1 10 |H| do

8 if P(i, H,) — P(I) > 26 then

9 hi = Hk

10 I+ I\ node i

11 break

In Alg. 2, we compute an assignment {h;} for each node
i € N using a simple rule: the larger the path loss of node
1, the lower the assigned power. In this way, we ensure that
the received power is sufficiently separated. Line 4 assigns the
minimum transmitting power to node 1 such that P(1, k) —¢
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Fig. 8: Number of measurements (delay) against different responder size.

is above P, the weakest response power that can be distin-
guished by the poller. For each of the remaining nodes, it
searches for a minimum power level such that the received
power of the current node is at least 26 above P(I) where
I contains all the nodes whose transmitting power has been
assigned in the former iterations. The condition in line 8 is
a key factor for maintaining the power gap among different
combinations of nodes.

C. Finger-Print based Identification

After obtaining the received power P, poller s maps P, to
a certain combination of neighbors. The mapping method is
quite intuitive: find a subset I of N that minimize |P(I)— P:|,
and return [ as the result. To further reduce the complexity,
we pre-estimate the expected received power of any possible
combinations of neighbors and construct a finger-print table
that maps a set of received power to a list of combinations
of neighbors. Let G be the set of all possible (expected)
received power that could be experienced by s, Vg € G,
L(g) denotes the list of responders that will generate g at
the poller. Then, s returns the set of responders [ satisfying
I = L(argmingeg{|P- — g|}).
D. Discussions

Due to the hardware limitations presented in § II-C, Poid
only applies to sparse networks with relatively small neigh-
borhood size. In sparse networks, we can carefully calculate
the power levels for each node to ensure that the aggre-
gate power of all transmissions will never exceed the power
threshold of the poller. Sparse networks are often encountered
since in many cases limited sensors need to be spread over
a large geographical area and dense deployments may not
be cost effective and practical. Examples include forest fire
monitoring [14], permafrost monitoring [13] and battlefield
monitoring [5]. In these scenarios, a sink or a mobile agent in
the case of Data MULEs [20] usually has small neighborhood
size, thus Poid can be applied on them to achieve efficient
node identification.

VI. IMPLEMENTATION

We implement Poc and Poid on a testbed consisting of
1 GNURadio USRP with RFX2400 daughterboard and 50

TelosB nodes. The USRP runs the UCLA ZigBee PHY [1]
code to send 802.15.4 packets. We set the sampling frequency
of USRP to be 2MHz, which is equivalent to that of the
CC2420 radios [16].

A. Received Power Measurement

The raw samples obtained by USRP are just complex num-
bers with the real part being the I-phase component and the
image part being the Q-phase component. Poller s computes
the sequence of I? + Q? as power samples. Recall that the
default length of an ACK response is 352 us, the number of
power samples that s needs to record is 2 MHz-352 ps=704.
Denote the sequence of power samples by S, then poller s
returns the median of 10 peaks of S as the received power.
Meanwhile, we empirically measured that the background
noise is about 0.009 mW, the power from a node that has the
largest path loss and transmits at the lowest power level is
0.04 mW (i.e., P, = 0.04mW). Thus, once s sensed a energy
elevation that is above 0.04 mW, it starts recording the power
samples.

B. Handling External Interference

We consider three cases where interference can play and
introduce corresponding handling mechanisms in the power
measurement procedure.

False positive energy elevation. In this case, the energy
elevation that s sensed is caused by interference rather than the
transmissions of neighbors. We exploit the fact that the time
gap ta between the instant the last bit of () is transmitted
and the instant the first bit of an ACK is transmitted is known
(in CC2420 radios, tao =~ 192 pus) [16]. Let € be the error
tolerance? of . Poller s will start listening immediately after
the last bit of @ is transmitted and ignore any energy elevation
whose delay is either smaller than {A — € or larger than ta +e€.
Partial peaks pollution. In this case, several peaks of S are
polluted by random impulses or sporadic WiFi transmissions.
Since s discards all non-peak power samples, we only consider
the case that the polluted peaks are larger than the normal.
We first select 100 peaks of S and compute their mean and

2We empirically set € to be a symbol’s duration, i.e., 16 us.
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variance, denoted as p and o, respectively, and then discard
all the peaks above p + 30. Thereafter, we randomly choose
10 peaks from the remnant and return the median of them as
the received power.

Overlapped with WiFi transmission. In this case, the trans-
missions of the neighbors are partially or entirely covered
by a WiFi transmission which has longer duration than our
transmissions. To detect this interference, poller s exploits the
fact that the duration of an ACK is known as a priori and
can reject a measurement if unexpected response length is
observed.

C. Discussions of Using USRP

We choose to use a USRP to act as the poller because
it can report power information with higher resolution than
commodity sensors do. The scenario in this paper may not
be a typical scenario of current WSNs. However, to perform
efficient counting and identification, we do not need to modify
any deployed nodes. All we need to do is add an additional
node (a USRP in our cases) equipped with more powerful
radios. Based on our experimental results, we argue that it is
rewarding to add such a special node.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Poc and Poid
under different wireless environments and parameter settings.
The testbed is located in a 18x25m laboratory of a school
building. As illustrated in Fig. 9, 50 sensor nodes are placed in
a grid-like topology. The USRP is connected to a Ubuntu 12.04
laptop and placed at the right area of the lab. In the initial
stage, we let the poller perform 30 packet exchanges with
each node. The response packet of each node contains their
respective transmitting power and the instants of transitions
on their SFD pins. Based on the information embedded in the
response packets and the observed received power, poller s
will (1) compensate signal propagation delay for each node;
(2) estimate the channel coefficients of each node; (3) compute
the path losses of each node, and (4) complete the power
assignment for each node.

A. Micro Benchmark

We conduct micro-benchmark to (1) investigate the interfer-
ence occurs in the lab; (2) measure the distribution of power
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Fig. 10: Duration of interference in different locations with respect
to different channels.

prediction error 0, and (3) evaluate Poc’s performance when
the responder size is no larger than ng.

1) Investigating the Interference: Both Poc and Poid work
on a channel that has little or no interference. On channels that
experience enormous energy pulses like WiFi transmissions,
Poc and Poid may suffer severe performance degradation.
In the following, we choose channel 25 and 26 to evaluate
the impact of ”mild” interference since these two channels
experience little WiFi energy. Channel 25 is chosen only for
comparison, in real applications, channel 26 is recommended.
To investigate the interference, we place a USRP in three sites
(illustrated by three stars in Fig. 9). The USRP is programmed
to listen on channel 25 and channel 26, respectively, for 30
seconds. Based on the power samples returned, we measure
the duration distributions of interference on each channel.
Results are illustrated in Fig. 10(a) and Fig. 10(b). We observe
that the results from different sites are similar. In particular,
results from both channel 25 and 26 show that short impulse
(Iess than 10 us) plays the main role of interference types.
Note that 10 us is less than the duration of an O-QPSK
symbol (16 us), implying that the interference type is mainly
partial peaks pollution, which can be handled by the poller
without remeasurement. Since channel 25 is close to channel
11 of WiFi communications, we observed more frequent and
relatively longer interference. Further, for the percentage of
interference in a period of 30s, channel 25 sees 17% while
channel 26 sees only 0.6%. In the following experiments, we
regard channel 26 as an interference-free environment.

2) Distribution of Power Prediction Error §: Next, we
measure the distribution of §. Twenty nodes which are closest
to the poller are selected in this experiment. The number of
responders monotonically increases from one to twenty. In
each round, the poller will first assign each node a transmitting
power such that all nodes have similar received power at
the poller. Then upon receiving a broadcast packet from the
poller, the responders transmit ACKs simultaneously with
assigned power level. Prediction error ¢ is computed as the
gap between the expected power and the observed power.
We repeat each round 200 times. The cumulative distribution
function (CDF) of § is plotted in Fig. 11(a). We see that
in an interference-free environment (in channel 26), § has

99" percentile being at most 0.03 mW. Thus, the requirement
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of bounded prediction error is satisfied in an interference-
free environment. Actually, in the strict sense, channel 26 is
not a completely no-interference environment. Therefore, the
percentile of 0.03 mW is supposed to be even larger than 99 in
a perfectly no-interference environment. We also observe that
this percentile is still above 80 in a environment of sporadic
WiFi interference (channel 25), which may attribute to the
mechanisms of handling interference adopted by the poller.

3) Counting with Controlled Responder Size: We then use
0 = 0.03mW to evaluate the performance of Poc under
limited responder size on different channels. Experiments are
conducted under the same setting as in § VII-A2. Based on
Eq. 4, we get ng = 20 here. Experiment results are plotted in
Fig. 11(b), averaged over 200 estimations for each responder
size. When there is no interference, the relative error is as low
as 1.5% and is always below 4%. When interference occurs,
the relative error shows just a 2% increase. Note that both of
these two errors show a decreasing tendency when the number
of nodes increases. We guess this is due to the decrease of
power variation when responder size increases, which is also
observed in Fig. 5.

B. Performance Evaluation of Poc and Poid

In this section, we evaluate the performance of Poc and Poid
on the testbed and explore the impact of different factors.

1) Accuracy and Delay: For Poc, we evaluate it’s counting
accuracy under different number of samples. For Poid, we
evaluate both the counting accuracy and identification accuracy
with only one sample.

Poc. To the best of our knowledge, there is no fast and
fine-grained neighbor counting methods in dense WSNs till

now. For ease of comparison, we implemented a baseline
according to the TDMA scheme described in [3]. We choose
not to compare Poc with LogPoll since LogPoll counts nodes
on a logarithmic scale, that is to say, if the responder size
falls into the range between two consecutive numbers that
are integer power of 2, the average error maybe very high.
In the baseline, each node is assigned a unique time slot.
After broadcasting a predicate, the poller can then identify
the number of responders based on the number of slots in
which the energy power is above the noise floor.

We test different values of the total number of samples
M (5, 10, 15) in which the first sample is used to get
a coarse estimation and the rest M — 1 samples are used
to get an accurate estimation. We conduct 200 rounds of
experiments for each number of responders varying from 21
to 50. The average error is summarized in Table I. We see that
increasing M significantly improves the accuracy of Poc. For
M = 15, the relative error is comparable with the baseline and
below 2.5% on both channels. TDMA still cannot count 100
percent accurately because it is also impacted by the external
interference. However, TDMA uses linear number of slots to
the network size while Poc uses constant number of slots. Note
that in this paper, we refer to the energy consumption as the
radio’s on-time, particularly, the radio on-time of the poller,
thus we believe that Poc is better than TDMA for its significant
energy efficiency advantage. Interference does impact the
performance of Poc, but the performance degradation is always
below 10%. Therefore, Poc is relatively robust to interference.

Poid. Nine nodes are used in this experiment. The responder
set changes from round to round and all nodes in the testbed
are covered. We compare Poid with LinearPoll [26], which
is also a power based identification method used in sparse
networks. In LinearPoll, each neighbor is assigned a unique
response length as well as a unique response RSSI. The poller
identifies nodes based on the RSSI drops in a receiving pro-
cedure. We set the response length difference A of LinearPoll
to be 4, which reports the best performance.

Table II summarizes the results. We use 2 to denote the
set of responders, and then deﬁns counting error €)q| Aand
identification error eg as: el = W, eq = w

We first examine the impact of the interference. For Poid,
counting error e|q| sees an increase of 8.4% when interference
occurs, identification error eq sees an increase of 7%. For
LinearPoll, counting error sees an increase of 4.5% and iden-
tification error sees an increase of 3.1%. We then compare the
performance of them on Ch.26, we see that counting error of
Poid is comparable with LinearPoll and the identification error
eq is 0.4% larger than that of LinearPoll. These results show
that LinearPoll is relatively more accurate and robust than
Poid. This is due to the fact that LinearPoll uses both response
length and received power to identify nodes, while nodes in
Poid have identical minimum response length. However, by
avoiding assigning different response length to different nodes,
Poid shows significant less communication delay compared
with LinearPoll.



Relative error e (%)
Ch. 25 Ch. 26
M=5 10.2 9.7
Poc | M=I0 4.5 3.9
M=15 24 2.1
TDMA 2.1 1.8

TABLE I: Average relative error of Poc and TDMA on different
channels.

ejo| (%) eq (%)
Ch.25 | Ch.26 | Ch. 25 Ch. 26
Poid 2.3 2.1 3.8 3.5
LinearPoll 2.2 2.1 3.2 3.1

TABLE II: Average relative error of Poid and LinearPoll on different
channels.
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Fig. 12: Poller’s radio on-time against different number of responders

We then measure the poller’s radio on-time for Poid and
LinearPoll respectively in Fig. 12, each result is averaged over
200 rounds. Since in LinearPoll, the response lengths must be
4 RSSI samples (i.e., 32 symbols) apart, adding a new node
to the responder set will cause the radio to listen at leat 32
symbols’ duration (0.512 ms) longer. Thus, the radio on-time
of LinearPoll increases linearly with the number of nodes.
On the contrary, Poid’s radio on-time remains constant and is
always below 1 ms.

2) Impact of Synchronization : As POs of component
signals heavily depend on the synchronization accuracy among
simultaneously transmitters. We investigate the performance of
Poc and Poid under three different synchronization accuracy
levels.

Level 1. No delay is mitigated or compensated. Responders
are just synchronized by a common trigger.

Level 2. Software delay is compensated and hardware delay
is mitigated. This synchronization level is used by Glossy [11].

Level 3. In addition to level 2, level 3 also evaluates and
compensates the round-way signal propagation delay from
each responder to the poller. This synchronization level is used
in the previous experiments.

The experiments are conducted on channel 26. For each
synchronization level, we collect 1000 data trace for both
Poc and Poid. For simplicity, only identification accuracy is
considered for Poid. The number of samples M in Poc is
set to 15. Fig. 13(a) plots the CDF of relative error of Poc
under different synchronization levels. We observe that both
of level 2 and level 3 show significant accuracy advantage
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Fig. 13: Impact of synchronization on the performance of Poc and
Poid.
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Fig. 14: Impact of packet length on the performance of Poc and Poid.

over level 1. For 80" percentile, the relative error is 5%,
20% and 100% for level 3, 2 and 1 respectively. For counting
error’s CDF of up to 20%, level 1 sees only 25% while level
2 sees 80% and level 3 sees 100%. We also observe similar
results for Poid in Fig. 13(b). Therefore, Fig. 13 demonstrates
that synchronization accuracy among responders plays a key
role in the performance of our systems. In our testbed, the
maximum distance difference from neighbors to the poller is
about 28 m, thus the maximum gap among round-way signal
propagation delays would be at least 0.187 us. By reducing
the phase offsets caused by this delay, level 3 shows a 10%
decrease on the average error of Poc and 21% decrease on the
average error of Poid when compared with level 2.

3) Impact of ACK Length: In the former experiments, we
use the default ACK length of 11 bytes. We now change
the length of ACKs and explore the performance of Poc
and Poid under different response lengths. We re-conduct the
experiments with eight different ACK lengths on channel 25
and the other settings are the same as in § VII-B2. Average
error of Poc and Poid, plotted in Fig. 14, are both fairly
constant and very similar (within 0.5% variation ) to the results
of the shortest response length (11 bytes), thus showing no
significant dependency on the ACK length. This may due to
the fact that ACK length has little impact on the received
power of the poller. Since shorter response length implies
shorter communication delay and higher energy efficiency, Poc
and Poid should always assign the shortest response length to
all neighbors.



VIII. RELATED WORKS

Numerous existing studies addressed the issue of efficient
responses collection in wireless networks. Basically, these
works can be categorized into multi-carrier based and time
slots based. Works based on multi-carriers exploit the Or-
thogonal Frequency Division Multiplexing (OFDM) modu-
lation scheme to let nodes respond in different sub-carriers
simultaneously [8], [19]. Although this scheme can achieve
counting and identification in constant delay, it is not suitable
for sensors for it’s heavy computation burden brought by
Fourier Transformations. Time slots based methods have been
extensively studied in the field of counting RFID tags [2],
[12], [17], [21]. A common feature of these methods is that
the poller can only distinguish three different events per given
slot: empty slot (no transmission in this slot); singleton slot
(one node transmit in this slot) and colliding slot (two or more
nodes transmit in this slot). Since Poc and Poid can further
distinguish the number of nodes when multiple nodes transmit
in a same slot, we believe that integrating our methods into the
existing RFID estimation schemes will significantly improve
counting accuracy and reduce counting delay.

In their seminal work of [26], Zeng et al. proposed RSSI-
based counting schemes LinearPoll and LogPoll, which allow
nodes respond simultaneously on a single carrier. LinearPoll,
worked in sparse networks, identify nodes by their response
length as well as RSSI and consumes energy that is linear in
the neighborhood size. LogPoll works in dense networks and
counts nodes on a logarithmic scale and consumes constant
energy. Compared with their works, we utilize power infor-
mation with higher resolution and demonstrate two substantial
advantages over LinearPoll and LogPoll. Specifically, Poid
reduces the energy cost of LinearPoll from O(n) to O(1)
while Poc improves the counting accuracy of LogPoll from
logarithmic scale to linear scale.

Constructive interference is an emerging trend in wireless
communications. It allows a common receiver to decode
concurrent transmissions of an identical packet and has been
exploited to achieve fast network flooding [11], [24], enhance-
ment of overall link PRR [23] and fast data dissemination [7].
A common requirement of these works is that the superposed
signals are decodable at the receiver. Instead, Poc and Poid
take advantage of the received power of superposed signals
and do not need to decode them, supposed to be more energy
efficient than the decoding-based methods.

IX. CONCLUSIONS

This paper investigates the problem of counting and iden-
tification via constructive interference in WSNs. We present
Poc and Poid. Poc allows neighbors to respond to a common
poller simultaneously and estimate the number of responder-
s with constant communication delay and constant energy
consumption. Poid can further identify the responders by
elaborately-designed power assignment algorithm and also
consume constant energy. We evaluate the performance of Poc
and Poid in different wireless environments and explore the
impact of different network characteristics. Results show that

Poc and Poid provide fast accurate counting and identification
with substantially lower energy consumption than the state-of-
the-art solutions.
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